Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Eur Radiol Exp ; 8(1): 54, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698099

RESUMO

BACKGROUND: We aimed to improve the image quality (IQ) of sparse-view computed tomography (CT) images using a U-Net for lung metastasis detection and determine the best tradeoff between number of views, IQ, and diagnostic confidence. METHODS: CT images from 41 subjects aged 62.8 ± 10.6 years (mean ± standard deviation, 23 men), 34 with lung metastasis, 7 healthy, were retrospectively selected (2016-2018) and forward projected onto 2,048-view sinograms. Six corresponding sparse-view CT data subsets at varying levels of undersampling were reconstructed from sinograms using filtered backprojection with 16, 32, 64, 128, 256, and 512 views. A dual-frame U-Net was trained and evaluated for each subsampling level on 8,658 images from 22 diseased subjects. A representative image per scan was selected from 19 subjects (12 diseased, 7 healthy) for a single-blinded multireader study. These slices, for all levels of subsampling, with and without U-Net postprocessing, were presented to three readers. IQ and diagnostic confidence were ranked using predefined scales. Subjective nodule segmentation was evaluated using sensitivity and Dice similarity coefficient (DSC); clustered Wilcoxon signed-rank test was used. RESULTS: The 64-projection sparse-view images resulted in 0.89 sensitivity and 0.81 DSC, while their counterparts, postprocessed with the U-Net, had improved metrics (0.94 sensitivity and 0.85 DSC) (p = 0.400). Fewer views led to insufficient IQ for diagnosis. For increased views, no substantial discrepancies were noted between sparse-view and postprocessed images. CONCLUSIONS: Projection views can be reduced from 2,048 to 64 while maintaining IQ and the confidence of the radiologists on a satisfactory level. RELEVANCE STATEMENT: Our reader study demonstrates the benefit of U-Net postprocessing for regular CT screenings of patients with lung metastasis to increase the IQ and diagnostic confidence while reducing the dose. KEY POINTS: • Sparse-projection-view streak artifacts reduce the quality and usability of sparse-view CT images. • U-Net-based postprocessing removes sparse-view artifacts while maintaining diagnostically accurate IQ. • Postprocessed sparse-view CTs drastically increase radiologists' confidence in diagnosing lung metastasis.


Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Feminino , Estudos Retrospectivos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Idoso
4.
Eur Radiol ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38337070

RESUMO

OBJECTIVES: To develop and share a deep learning method that can accurately identify optimal inversion time (TI) from multi-vendor, multi-institutional and multi-field strength inversion scout (TI scout) sequences for late gadolinium enhancement cardiac MRI. MATERIALS AND METHODS: Retrospective multicentre study conducted on 1136 1.5-T and 3-T cardiac MRI examinations from four centres and three scanner vendors. Deep learning models, comprising a convolutional neural network (CNN) that provides input to a long short-term memory (LSTM) network, were trained on TI scout pixel data from centres 1 to 3 to identify optimal TI, using ground truth annotations by two readers. Accuracy within 50 ms, mean absolute error (MAE), Lin's concordance coefficient (LCCC) and reduced major axis regression (RMAR) were used to select the best model from validation results, and applied to holdout test data. Robustness of the best-performing model was also tested on imaging data from centre 4. RESULTS: The best model (SE-ResNet18-LSTM) produced accuracy of 96.1%, MAE 22.9 ms and LCCC 0.47 compared to ground truth on the holdout test set and accuracy of 97.3%, MAE 15.2 ms and LCCC 0.64 when tested on unseen external (centre 4) data. Differences in vendor performance were observed, with greatest accuracy for the most commonly represented vendor in the training data. CONCLUSION: A deep learning model was developed that can identify optimal inversion time from TI scout images on multi-vendor data with high accuracy, including on previously unseen external data. We make this model available to the scientific community for further assessment or development. CLINICAL RELEVANCE STATEMENT: A robust automated inversion time selection tool for late gadolinium-enhanced imaging allows for reproducible and efficient cross-vendor inversion time selection. KEY POINTS: • A model comprising convolutional and recurrent neural networks was developed to extract optimal TI from TI scout images. • Model accuracy within 50 ms of ground truth on multi-vendor holdout and external data of 96.1% and 97.3% respectively was achieved. • This model could improve workflow efficiency and standardise optimal TI selection for consistent LGE imaging.

5.
Eur Radiol Exp ; 8(1): 11, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38316659

RESUMO

"Garbage in, garbage out" summarises well the importance of high-quality data in machine learning and artificial intelligence. All data used to train and validate models should indeed be consistent, standardised, traceable, correctly annotated, and de-identified, considering local regulations. This narrative review presents a summary of the techniques that are used to ensure that all these requirements are fulfilled, with special emphasis on radiological imaging and freely available software solutions that can be directly employed by the interested researcher. Topics discussed include key imaging concepts, such as image resolution and pixel depth; file formats for medical image data storage; free software solutions for medical image processing; anonymisation and pseudonymisation to protect patient privacy, including compliance with regulations such as the Regulation (EU) 2016/679 "General Data Protection Regulation" (GDPR) and the 1996 United States Act of Congress "Health Insurance Portability and Accountability Act" (HIPAA); methods to eliminate patient-identifying features within images, like facial structures; free and commercial tools for image annotation; and techniques for data harmonisation and normalisation.Relevance statement This review provides an overview of the methods and tools that can be used to ensure high-quality data for machine learning and artificial intelligence applications in radiology.Key points• High-quality datasets are essential for reliable artificial intelligence algorithms in medical imaging.• Software tools like ImageJ and 3D Slicer aid in processing medical images for AI research.• Anonymisation techniques protect patient privacy during dataset preparation.• Machine learning models can accelerate image annotation, enhancing efficiency and accuracy.• Data curation ensures dataset integrity, compliance, and quality for artificial intelligence development.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Estados Unidos , Curadoria de Dados , Aprendizado de Máquina , Algoritmos
6.
Eur Radiol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189981

RESUMO

OBJECTIVES: This study investigates the influence of normal cohort (NC) size and the impact of different NCs on automated MRI-based brain atrophy estimation. METHODS: A pooled NC of 3945 subjects (NCpool) was retrospectively created from five publicly available cohorts. Voxel-wise gray matter volume atrophy maps were calculated for 48 Alzheimer's disease (AD) patients (55-82 years) using veganbagel and dynamic normal templates with an increasing number of healthy subjects randomly drawn from NCpool (initially three, and finally 100 subjects). Over 100 repeats of the process, the mean over a voxel-wise standard deviation of gray matter z-scores was established and plotted against the number of subjects in the templates. The knee point of these curves was defined as the minimum number of subjects required for consistent brain atrophy estimation. Atrophy maps were calculated using each NC for AD patients and matched healthy controls (HC). Two readers rated the extent of mesiotemporal atrophy to discriminate AD/HC. RESULTS: The maximum knee point was at 15 subjects. For 21 AD/21 HC, a sufficient number of subjects were available in each NC for validation. Readers agreed on the AD diagnosis in all cases (Kappa for the extent of atrophy, 0.98). No differences in diagnoses between NCs were observed (intraclass correlation coefficient, 0.91; Cochran's Q, p = 0.19). CONCLUSION: At least 15 subjects should be included in age- and sex-specific normal templates for consistent brain atrophy estimation. In the study's context, qualitative interpretation of regional atrophy allows reliable AD diagnosis with a high inter-reader agreement, irrespective of the NC used. CLINICAL RELEVANCE STATEMENT: The influence of normal cohorts (NCs) on automated brain atrophy estimation, typically comparing individual scans to NCs, remains largely unexplored. Our study establishes the minimum number of NC-subjects needed and demonstrates minimal impact of different NCs on regional atrophy estimation. KEY POINTS: • Software-based brain atrophy estimation often relies on normal cohorts for comparisons. • At least 15 subjects must be included in an age- and sex-specific normal cohort. • Using different normal cohorts does not influence regional atrophy estimation.

7.
Eur Radiol ; 34(1): 28-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37532899

RESUMO

OBJECTIVES: To assess image quality and liver metastasis detection of reduced-dose dual-energy CT (DECT) with deep learning image reconstruction (DLIR) compared to standard-dose single-energy CT (SECT) with DLIR or iterative reconstruction (IR). METHODS: In this prospective study, two groups of 40 participants each underwent abdominal contrast-enhanced scans with full-dose SECT (120-kVp images, DLIR and IR algorithms) or reduced-dose DECT (40- to 60-keV virtual monochromatic images [VMIs], DLIR algorithm), with 122 and 106 metastases, respectively. Groups were matched by age, sex ratio, body mass index, and cross-sectional area. Noise power spectrum of liver images and task-based transfer function of metastases were calculated to assess the noise texture and low-contrast resolution. The image noise, signal-to-noise ratios (SNR) of liver and portal vein, liver-to-lesion contrast-to-noise ratio (LLR), lesion conspicuity, lesion detection rate, and the subjective image quality metrics were compared between groups on 1.25-mm reconstructed images. RESULTS: Compared to 120-kVp images with IR, 40- and 50-keV VMIs with DLIR showed similar noise texture and LLR, similar or higher image noise and low-contrast resolution, improved SNR and lesion conspicuity, and similar or better perceptual image quality. When compared to 120-kVp images with DLIR, 50-keV VMIs with DLIR had similar low-contrast resolution, SNR, LLR, lesion conspicuity, and perceptual image quality but lower frequency noise texture and higher image noise. For the detection of hepatic metastases, reduced-dose DECT by 34% maintained observer lesion detection rates. CONCLUSION: DECT assisted with DLIR enables a 34% dose reduction for detecting hepatic metastases while maintaining comparable perceptual image quality to full-dose SECT. CLINICAL RELEVANCE STATEMENT: Reduced-dose dual-energy CT with deep learning image reconstruction is as accurate as standard-dose single-energy CT for the detection of liver metastases and saves more than 30% of the radiation dose. KEY POINTS: • The 40- and 50-keV virtual monochromatic images (VMIs) with deep learning image reconstruction (DLIR) improved lesion conspicuity compared with 120-kVp images with iterative reconstruction while providing similar or better perceptual image quality. • The 50-keV VMIs with DLIR provided comparable perceptual image quality and lesion conspicuity to 120-kVp images with DLIR. • The reduction of radiation by 34% by DLIR in low-keV VMIs is clinically sufficient for detecting low-contrast hepatic metastases.


Assuntos
Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Estudos Prospectivos , Neoplasias Hepáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Doses de Radiação , Processamento de Imagem Assistida por Computador/métodos
8.
Eur Radiol ; 34(3): 1614-1623, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37650972

RESUMO

OBJECTIVE: This study aimed to evaluate the image quality and lesion conspicuity of the deep learning image reconstruction (DLIR) algorithm compared with standard image reconstruction algorithms on abdominal enhanced computed tomography (CT) scanning with a wide range of body mass indexes (BMIs). METHODS: A total of 112 participants who underwent contrast-enhanced abdominal CT scans were divided into three groups according to BMIs: the 80-kVp group (BMI ≤ 23.9 kg/m2), 100-kVp group (BMI 24-28.9 kg/m2), and 120-kVp group (BMI ≥ 29 kg/m2). All images were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction-V of 50% level (IR), and DLIR at low, medium, and high levels (DL, DM, and DH, respectively). Subjective noise, artifact, overall image quality, and low- and high-contrast hepatic lesion conspicuity were all graded on a 5-point scale. The CT attenuation value (in HU), image noise, and contrast-to-noise ratio (CNR) were quantified and compared. RESULTS: DM and DH improved the qualitative and quantitative parameters compared with FBP and IR for all three BMI groups. DH had the lowest image noise and highest CNR value, while DM had the highest subjective overall image quality and low- and high-contrast lesion conspicuity scores for the three BMI groups. Based on the FBP, the improvement in image quality and lesion conspicuity of DM and DH images was greater in the 80-kVp group than in the 100-kVp and 120-kVp groups. CONCLUSION: For all BMIs, DLIR improves both image quality and hepatic lesion conspicuity, of which DM would be the best choice to balance both. CLINICAL RELEVANCE STATEMENT: The study suggests that utilizing DLIR, particularly at the medium level, can significantly enhance image quality and lesion visibility on abdominal CT scans across a wide range of BMIs. KEY POINTS: • DLIR improved the image quality and lesion conspicuity across a wide range of BMIs. • DLIR at medium level had the highest subjective parameters and lesion conspicuity scores among all reconstruction levels. • On the basis of the FBP, the 80-kVp group had improved image quality and lesion conspicuity more than the 100-kVp and 120-kVp groups.


Assuntos
Aprendizado Profundo , Humanos , Índice de Massa Corporal , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Doses de Radiação , Processamento de Imagem Assistida por Computador
9.
Orthod Craniofac Res ; 27(2): 321-331, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009409

RESUMO

OBJECTIVE(S): This study aims to evaluate the influence of the piezocision surgery in the orthodontic biomechanics, as well as in the magnitude and direction of tooth movement in the mandibular arch using novel artificial intelligence (AI)-automated tools. MATERIALS AND METHODS: Nineteen patients, who had piezocision performed in the lower arch at the beginning of treatment with the goal of accelerating tooth movement, were compared to 19 patients who did not receive piezocision. Cone beam computed tomography (CBCT) and intraoral scans (IOS) were acquired before and after orthodontic treatment. AI-automated dental tools were used to segment and locate landmarks in dental crowns from IOS and root canals from CBCT scans to quantify 3D tooth movement. Differences in mesial-distal, buccolingual, intrusion and extrusion linear movements, as well as tooth long axis angulation and rotation were compared. RESULTS: The treatment time for the control and experimental groups were 13.2 ± 5.06 and 13 ± 5.52 months respectively (P = .176). Overall, anterior and posterior tooth movement presented similar 3D linear and angular changes in the groups. The piezocision group demonstrated greater (P = .01) mesial long axis angulation of lower right first premolar (4.4 ± 6°) compared with control group (0.02 ± 4.9°), while the mesial rotation was significantly smaller (P = .008) in the experimental group (0.5 ± 7.8°) than in the control (8.5 ± 9.8°) considering the same tooth. CONCLUSION: The open source-automated dental tools facilitated the clinicians' assessment of piezocision treatment outcomes. The piezocision surgery prior to the orthodontic treatment did not decrease the treatment time and did not influence in the orthodontic biomechanics, leading to similar tooth movements compared to conventional treatment.


Assuntos
Inteligência Artificial , Técnicas de Movimentação Dentária , Humanos , Resultado do Tratamento , Dente Pré-Molar , Técnicas de Movimentação Dentária/métodos , Tomografia Computadorizada de Feixe Cônico
10.
Eur Radiol Exp ; 7(1): 80, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38093075

RESUMO

BACKGROUND: To analyze regional variations in T2 and T2* relaxation times in wrist joint cartilage and the triangular fibrocartilage complex (TFCC) at 3 and 7 T and to compare values between field strengths. METHODS: Twenty-five healthy controls and 25 patients with chronic wrist pain were examined at 3 and 7 T on the same day using T2- and T2*-weighted sequences. Six different regions of interest (ROIs) were evaluated for cartilage and 3 ROIs were evaluated at the TFCC based on manual segmentation. Paired t-tests were used to compare T2 and T2* values between field strengths and between different ROIs. Spearman's rank correlation was calculated to assess correlations between T2 and T2* time values at 3 and 7 T. RESULTS: T2 and T2* time values of the cartilage differed significantly between 3 and 7 T for all ROIs (p ≤ 0.045), with one exception: at the distal lunate, no significant differences in T2 values were observed between field strengths. T2* values differed significantly between 3 and 7 T for all ROIs of the TFCC (p ≤ 0.001). Spearman's rank correlation between 3 and 7 T ranged from 0.03 to 0.62 for T2 values and from 0.01 to 0.48 for T2* values. T2 and T2* values for cartilage varied across anatomic locations in healthy controls at both 3 and 7 T. CONCLUSION: Quantitative results of T2 and T2* mapping at the wrist differ between field strengths, with poor correlation between 3 and 7 T. Local variations in cartilage T2 and T2* values are observed in healthy individuals. RELEVANCE STATEMENT: T2 and T2* mapping are feasible for compositional imaging of the TFCC and the cartilage at the wrist at both 3 and 7 T, but the clinical interpretation remains challenging due to differences between field strengths and variations between anatomic locations. KEY POINTS: •Field strength and anatomic locations influence T2 and T2* values at the wrist. •T2 and T2* values have a poor correlation between 3 and 7 T. •Local reference values are needed for each anatomic location for reliable interpretation.


Assuntos
Articulação do Punho , Punho , Humanos , Punho/diagnóstico por imagem , Articulação do Punho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Cartilagem
11.
Rev. esp. med. nucl. imagen mol. (Ed. impr.) ; 42(6): 388-392, nov.- dec. 2023. tab
Artigo em Espanhol | IBECS | ID: ibc-227103

RESUMO

Objetivos La escala de Deauville (DS) en la tomografía de emisión de positrones (PET) con [18F]fludeoxiglucosa ([18F]FDG) es un método semicuantitativo único para la evaluación del linfoma. Sin embargo, el tipo de algoritmo de reconstrucción empleado para el cálculo de los valores de captación estándar (max, medio y pico) podría afectar a la DS. Comparamos el algoritmo de reconstrucción de probabilidad penalizada bayesiano (BPL) con el de maximización de expectativas de subconjuntos ordenados (OSEM) respecto a los parámetros cuantitativos y en la DS en el linfoma. Investigamos el efecto del tamaño del ganglio linfático sobre la variación cuantitativa. Métodos Se reconstruyeron por separado los resultados de la PET sin procesar de 255 pacientes con linfoma utilizando la aplicación Q.Clear (General Electric Healthcare, Milwaukee, WI, EE. UU.), un algoritmo BPL, y la aplicación SharpIR (General Electric Healthcare, Milwaukee, WI, EE. UU.), un algoritmo OSEM. En ambas imágenes, para cada paciente, se valoró hígado, el pool sanguíneo mediastínico y los valores de captación estándar (SUV) (SUVmáx, SUVmedio y SUVpico) de un total de 487 lesiones seleccionadas. Se compararon DSmáx, DSmedio y DSpico. Resultados En nuestro estudio hubo un aumento significativo de la DS con el BPL (p<0,001) que pasó a una puntuación de 4 a 5 en 30 pacientes inicialmente catalogados como 1-2-3 mediante el algoritmo OSEM. Se observó que los valores cuantitativos de los ganglios linfáticos aumentaban de forma estadísticamente significativa con el BPL (p<0,001), mientras que la disminución de los valores de hígado fue notable respecto a las regiones de referencia (p<0,001). Además, la diferencia en los ganglios linfáticos se asoció de forma independiente con el tamaño de la lesión y fue considerablemente más pronunciada en las lesiones de pequeño tamaño (p<0,001) (AU)


Introduction and Objectives 18F-FDG PET with the Deauville score (DS) is a unique semiquantitative method for lymphoma. However, type of standard uptake values (max, mean, and peak) reconstruction algorithms could affect DS. We compared the Bayesian Penalized Likelihood reconstruction algorithm (BPL) with Ordered Subsets Expectation Maximization (OSEM) on quantitative parameters and DS in lymphoma. We investigated the effect of the size of the lymph node on quantitative variation. Patients and Methods Raw PET data of 255 lymphoma patients were reconstructed separately with Q.Clear (GE Healthcare), a BPL, and SharpIR (GE Healthcare), an OSEM algorithm. In both images, each patient's liver, mediastinal blood pool, and SUVs (SUVmax, SUVmean, and SUVpeak) of a total of 487 lesions selected from the patients were performed. DSmax, DSmean, and DSpeak were compared. Results In our study, DS increased significantly with BPL (p<0.001), and the DS increased to 4-5 in 30 patients evaluated as 1-2-3 with OSEM. It was found that the quantitative values of the lymph nodes increased statistically with BPL (p<0.001), and the liver from the reference regions were significantly decreased (p<0.001). In addition, difference in lymph node was independently associated with size of lesion and was significantly more pronounced in small lesions (p<0.001). The effects of BPL algorithm were more pronounced in SUVmax than in SUVmean and SUVpeak. DS-mean and DS-peak scores were less changed by BPL than DS-max. Conclusion Different reconstruction algorithms in FDG PET/CT affect the quantitative evaluation. That variation may affect the change in DS in lymphoma patients, thus affecting patient management (AU)


Assuntos
Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Processamento de Imagem Assistida por Computador , Linfoma/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Teorema de Bayes , Probabilidade , Algoritmos
12.
Eur Radiol ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127076

RESUMO

OBJECTIVE: To develop a discrimination pipeline concerning both radiomics and spatial distribution features of brain lesions for discrimination of multiple sclerosis (MS), aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorder (NMOSD), and myelin-oligodendrocyte-glycoprotein-IgG-associated disorder (MOGAD). METHODS: Hyperintensity T2 lesions were delineated in 212 brain MRI scans of MS (n = 63), NMOSD (n = 87), and MOGAD (n = 45) patients. To avoid the effect of fixed training/test dataset sampling when developing machine learning models, patients were allocated into 4 sub-groups for cross-validation. For each scan, 351 radiomics and 27 spatial distribution features were extracted. Three models, i.e., multi-lesion radiomics, spatial distribution, and joint models, were constructed using random forest and logistic regression algorithms for differentiating: MS from the others (MS models) and MOGAD from NMOSD (MOG-NMO models), respectively. Then, the joint models were combined with demographic characteristics (i.e., age and sex) to create MS and MOG-NMO discriminators, respectively, based on which a three-disease discrimination pipeline was generated and compared with radiologists. RESULTS: For classification of both MS-others and MOG-NMO, the joint models performed better than radiomics or spatial distribution model solely. The MS discriminator achieved AUC = 0.909 ± 0.027 and bias-corrected C-index = 0.909 ± 0.027, and the MOG-NMO discriminator achieved AUC = 0.880 ± 0.064 and bias-corrected C-index = 0.883 ± 0.068. The three-disease discrimination pipeline differentiated MS, NMOSD, and MOGAD patients with 75.0% accuracy, prominently outperforming the three radiologists (47.6%, 56.6%, and 66.0%). CONCLUSIONS: The proposed pipeline integrating multi-lesion radiomics and spatial distribution features could effectively differentiate MS, NMOSD, and MOGAD. CLINICAL RELEVANCE STATEMENT: The discrimination pipeline merging both radiomics and spatial distribution features of brain lesions may facilitate the differential diagnoses of multiple sclerosis, neuromyelitis optica spectrum disorder, and myelin-oligodendrocyte-glycoprotein-IgG-associated disorder. KEY POINTS: • Our study introduces an approach by combining radiomics and spatial distribution models. • The joint model exhibited superior performance in distinguishing multiple sclerosis from aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorder and myelin-oligodendrocyte-glycoprotein-IgG-associated disorder as well as discriminating the latter two diseases. • The three-disease discrimination pipeline showcased remarkable accuracy, surpassing the performance of experienced radiologists, highlighting its potential as a valuable diagnostic tool.

13.
Eur Radiol ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940711

RESUMO

OBJECTIVES: To compare coronary artery calcification (CAC) scores measured on virtual non-contrast (VNC) and virtual non-iodine (VNI) reconstructions computed from coronary computed tomography angiography (CCTA) using photon-counting computed tomography (PCCT) to true non-contrast (TNC) images. METHODS: We included 88 patients (mean age = 59 years ± 13.5, 69% male) who underwent a TNC coronary calcium scan followed by CCTA on PCCT. VNC images were reconstructed in 87 patients and VNI in 88 patients by virtually removing iodine from the CCTA images. For all reconstructions, CAC scores were determined, and patients were classified into risk categories. The overall agreement of the reconstructions was analyzed by Bland-Altman plots and the level of matching classifications. RESULTS: The median CAC score on TNC was 27.8 [0-360.4] compared to 8.5 [0.2-101.6] (p < 0.001) on VNC and 72.2 [1.3-398.8] (p < 0.001) on VNI. Bland-Altman plots depicted a bias of 148.8 (ICC = 0.82, p < 0.001) and - 57.7 (ICC = 0.95, p < 0.001) for VNC and VNI, respectively. Of all patients with CACTNC = 0, VNC reconstructions scored 63% of the patients correctly, while VNI scored 54% correctly. Of the patients with CACTNC > 0, VNC and VNI reconstructions detected the presence of coronary calcium in 90% and 92% of the patients. CACVNC tended to underestimate CAC score, whereas CACVNI overestimated, especially in the lower risk categories. According to the risk categories, VNC misclassified 55% of the patients, while VNI misclassified only 32%. CONCLUSION: Compared to TNC images, VNC underestimated and VNI overestimated the actual CAC scores. VNI reconstructions quantify and classify coronary calcification scores more accurately than VNC reconstructions. CLINICAL RELEVANCE STATEMENT: Photon-counting CT enables spectral imaging, which might obviate the need for non-contrast enhanced coronary calcium scoring, but optimization is necessary for the clinical implementation of the algorithms. KEY POINTS: • Photon-counting computed tomography uses spectral information to virtually remove the signal of contrast agents from contrast-enhanced scans. • Virtual non-contrast reconstructions tend to underestimate coronary artery calcium scores compared to true non-contrast images, while virtual non-iodine reconstructions tend to overestimate the calcium scores. • Virtual non-iodine reconstructions might obviate the need for non-contrast enhanced calcium scoring, but optimization is necessary for the clinical implementation of the algorithms.

14.
Eur Radiol Exp ; 7(1): 70, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37957426

RESUMO

BACKGROUND: Automated segmentation of spinal magnetic resonance imaging (MRI) plays a vital role both scientifically and clinically. However, accurately delineating posterior spine structures is challenging. METHODS: This retrospective study, approved by the ethical committee, involved translating T1-weighted and T2-weighted images into computed tomography (CT) images in a total of 263 pairs of CT/MR series. Landmark-based registration was performed to align image pairs. We compared two-dimensional (2D) paired - Pix2Pix, denoising diffusion implicit models (DDIM) image mode, DDIM noise mode - and unpaired (SynDiff, contrastive unpaired translation) image-to-image translation using "peak signal-to-noise ratio" as quality measure. A publicly available segmentation network segmented the synthesized CT datasets, and Dice similarity coefficients (DSC) were evaluated on in-house test sets and the "MRSpineSeg Challenge" volumes. The 2D findings were extended to three-dimensional (3D) Pix2Pix and DDIM. RESULTS: 2D paired methods and SynDiff exhibited similar translation performance and DCS on paired data. DDIM image mode achieved the highest image quality. SynDiff, Pix2Pix, and DDIM image mode demonstrated similar DSC (0.77). For craniocaudal axis rotations, at least two landmarks per vertebra were required for registration. The 3D translation outperformed the 2D approach, resulting in improved DSC (0.80) and anatomically accurate segmentations with higher spatial resolution than that of the original MRI series. CONCLUSIONS: Two landmarks per vertebra registration enabled paired image-to-image translation from MRI to CT and outperformed all unpaired approaches. The 3D techniques provided anatomically correct segmentations, avoiding underprediction of small structures like the spinous process. RELEVANCE STATEMENT: This study addresses the unresolved issue of translating spinal MRI to CT, making CT-based tools usable for MRI data. It generates whole spine segmentation, previously unavailable in MRI, a prerequisite for biomechanical modeling and feature extraction for clinical applications. KEY POINTS: • Unpaired image translation lacks in converting spine MRI to CT effectively. • Paired translation needs registration with two landmarks per vertebra at least. • Paired image-to-image enables segmentation transfer to other domains. • 3D translation enables super resolution from MRI to CT. • 3D translation prevents underprediction of small structures.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos , Coluna Vertebral/diagnóstico por imagem
15.
Eur Radiol ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019313

RESUMO

OBJECTIVE: To improve breast radiographers' individual performance by using automated software to assess the correctness of breast positioning and compression in tomosynthesis screening. MATERIALS AND METHODS: In this retrospective longitudinal analysis of prospective cohorts, six breast radiographers with varying experience in the field were asked to use automated software to improve their performance in breast compression and positioning. The software tool automatically analyzes craniocaudal (CC) and mediolateral oblique (MLO) views for their positioning quality by scoring them according to PGMI classifications (perfect, good, moderate, inadequate) and checking whether the compression pressure is within the target range. The positioning and compression data from the studies acquired before the start of the project were used as individual baselines, while the data obtained after the training were used to test whether conscious use of the software could help the radiographers improve their performance. The percentage of views rated perfect or good and the percentage of views in target compression were used as overall metrics to assess changes in performance. RESULTS: Following the use of the software, all radiographers significantly increased the percentage of images rated as perfect or good in both CCs and MLOs. Individual improvements ranged from 7 to 14% for CC and 10 to 16% for MLO views. Moreover, most radiographers exhibited improved compression performance in CCs, with improvements up to 16%. CONCLUSION: Active use of a software tool to automatically assess the correctness of breast compression and positioning in breast cancer screening can improve the performance of radiographers. CLINICAL RELEVANCE STATEMENT: This study suggests that the use of a software tool for automatically evaluating correctness of breast compression and positioning in breast cancer screening can improve the performance of radiographers on these metrics, which may ultimately lead to improved screening outcomes. KEY POINTS: • Proper breast positioning and compression are critical in breast cancer screening to ensure accurate diagnosis. • Active use of the software increased the quality of craniocaudal and mediolateral oblique views acquired by all radiographers. • Improved performance of radiographers is expected to improve screening outcomes.

16.
J Clin Pathol ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37977655

RESUMO

AIMS: The prognostic impact of programmed death-ligand 1 (PD-L1) cells in classic Hodgkin lymphoma (cHL) tumour microenvironment remains undefined. METHODS: Model development via Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis guidelines were followed. PD-L1+ and CD30+ tumoral Reed-Sternberg cells were quantified through whole slide imaging and digital image analysis in 155 digital histopathological slides of cHL. Univariate and multivariate survival analyses were performed. The analyses were reproduced for patients with advanced stages (IIB, III and IV) using the Advanced-stage cHL International Prognostic Index. RESULTS: The PD-L1/CD30 ratio was statistically significantly associated with survival outcomes. Patients with a PD-L1/CD30 ratio above 47.1 presented a shorter overall survival (mean OS: 53.7 months; 95% CI: 28.7 to 78.7) in comparison with patients below this threshold (mean OS: 105.4 months; 95% CI: 89.6 to 121.3) (p=0.04). When adjusted for covariates, the PD-L1/CD30 ratio retained prognostic impact, both for the OS (HR: 1.005; 95% CI: 1.002 to 1.008; p=0.000) and the progression-free survival (HR: 3.442; 95% CI: 1.045 to 11.340; p=0.04) in a clinical and histopathological multivariate model including the male sex (HR: 3.551; 95% CI: 0.986 to 12.786; p=0.05), a percentage of tumoral cells ≥10.1% (HR: 1.044; 95% CI: 1.003 to 1.087; p=0.03) and high risk International Prognostic Score (≥3 points) (HR: 6.453; 95% CI: 1.970 to 21.134; p=0.002). CONCLUSIONS: The PD-L1/CD30 ratio identifies a group of cHL patients with an increased risk of treatment failure. Its clinical application can be performed as it constitutes an easy to implement pathological information in the diagnostic work-up of patients with cHL.

17.
Eur Radiol ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968474

RESUMO

OBJECTIVES: Metal artifacts remain a challenge in computed tomography. We investigated the potential of photon-counting computed tomography (PCD-CT) for metal artifact reduction using an iterative metal artifact reduction (iMAR) algorithm alone and in combination with high keV monoenergetic images (140 keV) in patients with dental hardware. MATERIAL AND METHODS: Consecutive patients with dental implants were prospectively included in this study and received PCD-CT imaging of the craniofacial area. Four series were reconstructed (standard [PCD-CTstd], monoenergetic at 140 keV [PCD-CT140keV], iMAR corrected [PCD-CTiMAR], combination of iMAR and 140 keV monoenergetic [PCD-CTiMAR+140keV]). All reconstructions were assessed qualitatively by four radiologists (independent and blinded reading on a 5-point Likert scale [5 = excellent; no artifact]) regarding overall image quality, artifact severity, and delineation of adjacent and distant anatomy. To assess signal homogeneity and evaluate the magnitude of artifact reduction, we performed quantitative measures of coefficient of variation (CV) and a region of interest (ROI)-based relative change in artifact reduction [PCD-CT/PCD-CTstd]. RESULTS: We enrolled 48 patients (mean age 66.5 ± 11.2 years, 50% (n = 24) males; mean BMI 25.2 ± 4.7 kg/m2; mean CTDIvol 6.2 ± 6 mGy). We found improved overall image quality, reduced artifacts and superior delineation of both adjacent and distant anatomy for the iMAR vs. non-iMAR reconstructions (all p < 0.001). No significant effect of the different artifact reduction approaches on CV was observed (p = 0.42). The ROI-based analysis indicated the most effective artifact reduction for the iMAR reconstructions, which was significantly higher compared to PCD-CT140keV (p < 0.001). CONCLUSION: PCD-CT offers highly effective approaches for metal artifact reduction with the potential to overcome current diagnostic challenges in patients with dental implants. CLINICAL RELEVANCE STATEMENT: Metallic artifacts pose a significant challenge in CT imaging, potentially leading to missed findings. Our study shows that PCD-CT with iMAR post-processing reduces artifacts, improves image quality, and can possibly reveal pathologies previously obscured by artifacts, without additional dose application. KEY POINTS: • Photon-counting detector CT (PCD-CT) offers highly effective approaches for metal artifact reduction in patients with dental fillings/implants. • Iterative metal artifact reduction (iMAR) is superior to high keV monoenergetic reconstructions at 140 keV for artifact reduction and provides higher image quality. • Signal homogeneity of the reconstructed images is not affected by the different artifact reduction techniques.

18.
J Clin Pathol ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945334

RESUMO

AIMS: In routine diagnosis of lymphoma, initial non-specialist triage is carried out when the sample is biopsied to determine if referral to specialised haematopathology services is needed. This places a heavy burden on pathology services, causes delays and often results in over-referral of benign cases. We aimed to develop an automated triage system using artificial intelligence (AI) to enable more accurate and rapid referral of cases, thereby addressing these issues. METHODS: A retrospective dataset of H&E-stained whole slide images (WSI) of lymph nodes was taken from Newcastle University Hospital (302 cases) and Manchester Royal Infirmary Hospital (339 cases) with approximately equal representation of the 3 most prevalent lymphoma subtypes: follicular lymphoma, diffuse large B-cell and classic Hodgkin's lymphoma, as well as reactive controls. A subset (80%) of the data was used for training, a further validation subset (10%) for model selection and a final non-overlapping test subset (10%) for clinical evaluation. RESULTS: AI triage achieved multiclass accuracy of 0.828±0.041 and overall accuracy of 0.932±0.024 when discriminating between reactive and malignant cases. Its ability to detect lymphoma was equivalent to that of two haematopathologists (0.925, 0.950) and higher than a non-specialist pathologist (0.75) repeating the same task. To aid explainability, the AI tool also provides uncertainty estimation and attention heatmaps. CONCLUSIONS: Automated triage using AI holds great promise in contributing to the accurate and timely diagnosis of lymphoma, ultimately benefiting patient care and outcomes.

19.
Eur Radiol Exp ; 7(1): 58, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37789241

RESUMO

Artificial intelligence has opened a new path of innovation in magnetic resonance (MR) image reconstruction of undersampled k-space acquisitions. This review offers readers an analysis of the current deep learning-based MR image reconstruction methods. The literature in this field shows exponential growth, both in volume and complexity, as the capabilities of machine learning in solving inverse problems such as image reconstruction are explored. We review the latest developments, aiming to assist researchers and radiologists who are developing new methods or seeking to provide valuable feedback. We shed light on key concepts by exploring the technical intricacies of MR image reconstruction, highlighting the importance of raw datasets and the difficulty of evaluating diagnostic value using standard metrics.Relevance statement Increasingly complex algorithms output reconstructed images that are difficult to assess for robustness and diagnostic quality, necessitating high-quality datasets and collaboration with radiologists.Key points• Deep learning-based image reconstruction algorithms are increasing both in complexity and performance.• The evaluation of reconstructed images may mistake perceived image quality for diagnostic value.• Collaboration with radiologists is crucial for advancing deep learning technology.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos
20.
Imaging Sci Dent ; 53(2): 109-115, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37405203

RESUMO

Purpose: The aim of this study was to evaluate changes in the trabecular bone through texture analysis and compare the texture analysis characteristics of different areas in patients with medication-related osteonecrosis of the jaw (MRONJ). Materials and Methods: Cone-beam computed tomographic images of 16 patients diagnosed with MRONJ were used. In sagittal images, 3 regions were chosen: active osteonecrosis (AO); intermediate tissue (IT), which presented a zone of apparently healthy tissue adjacent to the AO area; and healthy bone tissue (HT) (control area). Texture analysis was performed evaluating 7 parameters: secondary angular momentum, contrast, correlation, sum of squares, inverse moment of difference, sum of entropies, and entropy. Data were analyzed using the Kruskal-Wallis test with a significance level of 5%. Results: Comparing the areas of AO, IT, and HT, significant differences (P<0.05) were observed. The IT and AO area images showed higher values for parameters such as contrast, entropy, and secondary angular momentum than the HT area, indicating greater disorder in these tissues. Conclusion: Through texture analysis, changes in the bone pattern could be observed in areas of osteonecrosis. The texture analysis demonstrated that areas visually identified and classified as IT still had necrotic tissue, thereby increasing the accuracy of delimiting the real extension of MRONJ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...